

High Performance React

Thomas Hintz

This book is for sale at

http://leanpub.com/high-performance-react

This version was published on 2021-01-21

This is a Leanpub book. Leanpub empowers authors and

publishers with the Lean Publishing process. Lean

Publishing is the act of publishing an in-progress ebook

using lightweight tools and many iterations to get reader

feedback, pivot until you have the right book and build

traction once you do.

© 2020 - 2021 Thomas Hintz

http://leanpub.com/high-performance-react
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Contents

Preface . 1

Introduction . 2

Foundations: Building our own React 5
Components of React 6

Markup in JavaScript: JSX 8

Getting Ready to Render with createElement 12

Render: Putting Elements on the Screen 14

Reconciliation, or How React Diffs 16

Fibers: Splitting up Render 25

Putting it all together 26

Conclusion . 28

Rendering Model . 30
React.memo . 32

React.PureComponent 34

Adding support for memoization to our React . . . 34

Identifying & Diagnosing Bottlenecks 41

CONTENTS

Describing Performance Issues 42

Measuring . 43

Reducing Renders . 46

Improving DOM Merge Performance 47

Reducing Number of Components 48

Windowing . 49

Performance Tools . 50

JS Performance Tools . 51

Code Splitting . 52

Server Side Rendering . 53

Concurrent Rendering . 54

UX . 55

JS Service Workers . 56

Keys . 57

Reconciliation . 58

Preface

Introduction
It was the late 90’s and I was just a kid visiting my Aunt and

Uncle and their family in Denver. The days were packed with

endless playing and goofing around. I didn’t get to see my

cousins much and we were having a good time. But it was

the late 90’s and the Internet was booming. And my cousin

was in on it.

A “startup”, that’s what he called it. I didn’t understand any

of what he was saying about it. Grown-up stuff. Then he

showed us the webpage for the startup and I thought that was

impressive.

“How did you make that”? I asked him. I think he was a little

confused at first about what I was even talking about but he

quickly brought me over to the computer and showed me a

screen full of text.

“You just type HTML, that’s how you make the webpage.” I

thought this was the coolest.

“What do you type that into? What program is it? Can I do

that?” He told me it was easy: just use Notepad. I wasn’t going

to let him go without some hook I could grab into this alien

world. He told me it’s really easy to learn: do an AOL search

Introduction 3

for “HTML tutorial”.

So began my journey with web development. I AOL searched

my way through as many blinking text tutorials as I could

find. It wasn’t long until I was building AJAX. We had IE

5.5 and 6 and Mozilla Pheonix. And GMail came out. That

changed things, now web apps were “legitimate.”

A lot of the technologies and libraries came and went over the

years but one thing remained constant in large web apps: poor

performance. From the very early days I was timing things

with my stop watch. Sometimes things were slow and I had to

understandwhy and how to fix them. Over the years I learned

all about the browser’s DOM and its APIs and how they work.

I learned how jQuery worked and backbone.js and all the rest.

I made apps that didn’t lag or have jank.

I was able to do this because I understood the performance

implications of the tools and libraries I was using and I learned

how to measure performance. I had discovered the recipe for

high-performance code.

And that is what this book is: a recipe for producing high-

performance React applications. First, we learn how React

works. Then we learn how to measure performance. And last

we learn how to address the bottlenecks we find. Parts of any

technical book will go stale as technology changes and that

is no less true for this book. But what I hope you learn is not

just the technical details but more importantly the method for

Introduction 4

writing high-performance code. The API might change but

the method will remain the same.

TODO note that the book references React-DOM but the algo-

rithms should generally apply to all React implementations.

Foundations: Building
our own React
Baking bread. When I first began to learn how to bake bread

the recipe told me what to do. It listed some ingredients and

told me how to combine them and prescribed times of rest. It

gave me an oven temperature and a period of wait. It gave

me mediocre bread of wildly varying quality. I tried different

recipes but the result was always the same.

Understanding: that’s what I was missing. The bread I make

is now consistently good. The recipes I use are simpler and

only give ratios and general recommendations for rests and

waits. So why does the bread turn out better?

Before baking is finished bread is a living organism. The way

it grows and develops and flavors depend on what you feed it

and how you feed it and massage it, care for it. If you have it

grow and ferment at a higher temperature and more yeast

it overdevelops producing too much alcohol. If you give it

too much time, acidity will take over the flavor. The recipes

I used initially were missing a critical ingredient: the rising

temperature.

Foundations: Building our own React 6

But unlike a lot of ingredients: temperature is hard to control

for the home cook. So the recipe can’t just tell you exactly

what temperature to grow the bread at. My initial recipes

just silently made assumptions for the temperature, which

rarely turn out to be true. This means that the only way to

consistently make good bread is to have an understanding

of how bread develops so that you can adjust the other

ingredients to complement the temperature. Now the bread

can tell me what to do.

While React isn’t technically a living organism that can tell us

what to do, it is, in its whole, a complex, abstract entity. We

could learn basic recipes for how to write high-performance

React code but they wouldn’t apply in all cases, and as React

and things under it change our recipes would fall out-of-date.

So like the bread, to produce consistently good results we need

to understand how React does what it does.

Components of React

The primary elements that make up any React program are

its components. A component in React maintains local

state and “renders” output to eventually be included in the

browser’s DOM. A tree of components is then created when-

ever a component outputs other components.

So, conceptually, React’s core algorithm is very simple: it

starts by walking a tree of components and building up a tree

Foundations: Building our own React 7

of their output. Then it compares that tree to the tree currently

in the browser’s DOM to find any differences between them.

When it finds differences it updates the browser’s DOM to

match its internal tree.

But what does that actually look like? If your app is janky

does that explanation point you towards what is wrong?

No. It might make you wonder if maybe it is too expensive

to re-render the tree or if maybe the diffing React does is

slow but you won’t really know. When I was initially testing

out different bread recipes I had guesses at why it wasn’t

working but I didn’t really figure it out until I had a deeper

understanding of how making bread worked. It’s time we

build up our understanding of how React works so that we

can start to answer our questions with solid answers.

React is centered around the render method. The render
method is what walks our trees, diffs themwith the browser’s

DOM tree, and updates the DOM as needed. But before we

can look at the render method we have to understand

its input. The input comes from createElement. While

createElement itself is unlikely to be a bottleneck it’s

good to understand how it works so that we can have a

complete picture of the entire process. The more black-boxes

we have in our mental model the harder it will be for us to

diagnose performance problems.

Foundations: Building our own React 8

Markup in JavaScript: JSX

createElement, however, takes as input something that

is probably not familiar to us since we usually work in JSX,

which is the last element of the chain in this puzzle and the

first step in solving it. While not strictly a part of React, it is

almost universally used with it. And if we understand it then

createElement will be less of a mystery since we will be

able to connect all the dots.

JSX is not valid HTML or JavaScript but its own language com-

piled by a compiler, like Babel. The output of that compilation

is valid JavaScript that represents the original markup.

Before JSX or similar compilers, the normal way of injecting

HTML into the DOM was via directly utilizing the browser’s

DOM APIs or by setting innerHTML. This was very cum-

bersome. The code’s structure did not match the structure

of the HTML that it output which made it hard to quickly

understand what the output of a piece of code would be.

So naturally programmers have been endlessly searching for

better ways to mix HTML with JavaScript.

And this brings us to JSX. It is nothing new; nothing compli-

cated. Forms of it have been made and used long before React

adopted it. Now let’s see if we can discover JSX for ourselves.

To start with, we need to create a data-structure – let’s call it

JavaScript Markup (JSM) – that both represents a DOM tree

Foundations: Building our own React 9

and can also be used to insert one into the browser’s DOM.

And to do that we need to understand what a tree of DOM

nodes is constructed of. What parts do you see here?

<div class="header">
<h1>Hello</h1>
<input type="submit" disabled />

</div>

I see three parts: the name of the tag, the tag’s properties, and

its children.

Name: ‘div’, ‘h1’, ‘input’

Props: ‘class’, ‘type’, ‘disabled’

Children: <h1>, <input>, Hello

Now how could we recreate that in JavaScript?

In JavaScript, we store lists of things in arrays, and key/value

properties in objects. Luckily for us, JavaScript even gives us

literal syntax for both so we can easily make a compact DOM

tree with our own notation.

This is what I’m thinking:

Foundations: Building our own React 10

JSM - JavaScript Markup

['div', { 'className': 'header' },
[['h1', {}, ['Hello']],
['input', { 'type': 'submit', 'disabled': 'disabled' }, []]
]

]

As you can see, we have a clear mapping from our notation,

JSM, to the original HTML. Our tree is made up of three

element arrays. The first item in the array is the tag, the

second is an object containing the tag’s properties, and the

third is an array of its children; which are all made up of the

same three element arrays.

The truth is though, if you stare at it long enough, although

the mapping is clear, how much fun would it be to read and

write that on a consistent basis? I can assure you, it is rather

not fun. But it has the advantage of being easy to insert into

the DOM. All you need to do is write a simple recursive

function that ingests our data structure and updates the DOM

accordingly. We will get back to that.

So now we have a way to represent a tree of nodes and we

(theoretically) have a way to get those nodes into the DOM.

But if we are being honest with ourselves, while functional, it

isn’t a pretty notation nor easy to work with.

And this is where our object of study enters the scene. JSX is

just a notation that a compiler takes as input and outputs in its

place a tree of nodes nearly identical to the notation we came

Foundations: Building our own React 11

up with! And if you look back to our notation you can see

that you can easily embed arbitrary JavaScript expressions

wherever you want in a node. As you may have realized,

that’s exactly what the JSX compiler does when it sees curly

braces!

There are three main differences between JSM and the real

output of the JSX compiler: it uses objects instead of arrays, it

inserts calls to React.createElement on children, and spreads

the children instead of containing them in an array. Here is

what real JSX compiler output looks like:

React.createElement(
'div',
{ className: 'header' },
React.createElement('h1', {}, 'Hello'),
React.createElement(
'input',
{ type: 'submit', 'disabled': 'disabled' })

);

As you can see, it is very similar to our JSM data-structure

and for the purposes of this book we will use JSM, as it’s a bit

easier to work with. A JSX compiler also does some validation

and escapes input to prevent cross-site scripting attacks. In

practice though, it would behave the same in our areas of

study and we will keep things simple by leaving those aspects

of the JSX compiler out.

So now that we’ve worked through JSX we’re ready to tackle

createElement, the next item on our way to building our

Foundations: Building our own React 12

own React.

Getting Ready to Render with
createElement

React’s render expects to consume a tree of element ob-

jects in a specific, uniform format. createElement is the

method by which we achieve that objective. createEle-
ment will take as input JSM and output a tree of objects

compatible with render.

React expects nodes defined as JavaScript objects that look

like this:

{
type: NODE_TYPE,
props: {

propA: VALUE,
propB: VALUE,
...
children: STRING | ARRAY

}
}

That is: an object with two properties: type and props. The
props property contains all the properties of the node. The

node’s children are also considered part of its properties.

The full version of React’s createElement includes more

properties but they are not relevant to our study here.

Foundations: Building our own React 13

function createElement(node) {
// if array (our representation of an element)
if (Array.isArray(node)) {

const [tag, props, children] = node;
return {

type: tag,
props: {

...props,
children: children.map(createElement)

}
};

}

// primitives like text or number
return {

type: 'TEXT',
props: {

nodeValue: node,
children: []

}
};

}

Our createElement has two main parts: complex ele-

ments and primitive elements. The first part tests whether

node is a complex node (specified by an array) and then

generates an element object based on the input node. It

recursively calls createElement to generate an array

of children elements. If the node is not complex then we

generate an element of type ‘TEXT’ which we use for all

primitives like strings and numbers. We call the output of

createElement a tree of elements (surprise).

That’s it. Now we have everything we need to actually begin

the process of rendering our tree to the DOM!

Foundations: Building our own React 14

Render: Putting Elements on the
Screen

There are now only two major puzzles remaining in our quest

for our own React. The next piece is: render. How do we go

from our JSM tree of nodes, to actually displaying something

on screen? To do that we will explore the render method.

The signature for our render method should be familiar to

you:

function render(element, container)

This is the same signature as that of React itself. We begin by

just focusing on the initial render. In pseudocode it looks like

this:

function render(element, container) {
const domElement = createDOMElement(element);
setProps(element, domElement);
renderChildren(element, domElement);
container.appendChild(domElement);

Our DOM element is created first. Then we set the properties,

render children elements, and finally append the whole tree

to the container.

Now that we have an idea of what to build we will work

on expanding the pseudocode until we have our own fully

functionalrendermethod using the same general algorithm

Foundations: Building our own React 15

React uses. In our first pass we will focus on the initial render

and ignore reconciliation.

Reconciliation is basically React’s “diffing” algo-

rithm. We will be exploring it after we work out

the initial render.

function render(element, container) {
const { type, props } = element;

// create the DOM element
const domElement = type === 'TEXT' ?

document.createTextNode(props.nodeValue) :
document.createElement(type);

// set its properties
Object.keys(props)

.filter((key) => key !== 'children')

.forEach((key) => domElement[key] = props[key]);

// render its children
props.children.forEach((child) => render(child, domElement));

// add our tree to the DOM!
container.appendChild(domElement);

}

The render method starts by creating the DOM element.

Then we need to set its properties. To do this we first need

to filter out the children property and then we simply

loop over the keys, setting each property directly. Following

that, we render each of the children by looping over them

and recursively calling render on each child with the

Foundations: Building our own React 16

container set to the current DOM element (which is each

child’s parent).

Now we can go all the way from our JSX-like notation to a

rendered tree in the browser’s DOM! But so far we can only

add things to our tree. To be able to remove and modify the

tree we need one more part: reconciliation.

Reconciliation, or How React
Diffs

A tale of two trees. These are the two trees that people most

often talk about when talking about React’s “secret sauce”:

the virtual DOM and the browser’s DOM tree. This idea is

what originally set React apart. React’s reconciliation is what

allows you to program declaratively. Reconciliation is what

makes it so we no longer have to manually update and modify

the DOM whenever our own internal state changes. In a lot

of ways, it is what makes React, React.

Conceptually, the way this works is that React generates a

new element tree for every render and compares the newly

generated tree to the tree generated on the previous render.

Where it finds differences between the trees it knows to

mutate the DOM state. This is the “tree diffing” algorithm.

Unfortunately, those researching tree diffing in Computer

Science have not yet produced a generic algorithm with

Foundations: Building our own React 17

sufficient performance for use in something like React; as the

current best algorithm still runs in O(n³).

Since an O(n³) algorithm isn’t going to cut it in the real-world,

the creators of React instead use a set of heuristics to deter-

mine what parts of the tree have changed. Understanding

how the React tree diffing algorithm works in general and the

heuristics currently in use can help immensely in detecting

and fixing React performance bottlenecks. And beyond that

it can help one’s understanding of some of React’s quirks and

usage. Even though this algorithm is internal to React and can

be changed anytime its details have leaked out in some ways

and are overall unlikely to change in major ways without

larger changes to React itself.

According to the React documentation their diffing algorithm

is O(n) and based on two major components:

• Elements of differing types will yield different trees

• You can hint at tree changes with the key prop.

In this sectionwewill focus on the first part: differing types. In

a later chapter we will discuss and implement the key prop.

The approach we will take here is to integrate the heuristics

that React uses into our render method. Our implementa-

tion will be very similar to how React itself does it and we

will discuss React’s actual implementation later when we talk

about Fibers.

https://grfia.dlsi.ua.es/ml/algorithms/references/editsurvey_bille.pdf
https://reactjs.org/docs/reconciliation.html

Foundations: Building our own React 18

Before we get into the code changes that implement the

heuristics it is important to remember that React only looks

at an element’s type, existence, and key. It does not do any

other diffing. It does not diff props. It does not diff sub-trees

of modified parents.

While keeping that in mind, here is an overview of the

algorithm we will be implementing in the render method.

element is the element from the current tree and prev-
Element is the corresponding element in the tree from the

previous render.

if (!element && prevElement)
// delete dom element

else if (element && !prevElement)
// add new dom element, render children

else if (element.type === prevElement.type)
// update dom element, render children

else if (element.type !== prevElement.type)
// replace dom element, render children

Notice that in every case, except deletion, we still call ren-
der on the element’s children. And while it’s possible that

the children will have their associated DOM elements reused,

their render methods will still be invoked.

Now, to get started with our render method we must make

some modifications to our previous render method. First, we

need to be able to store and retrieve the previous render tree.

Then we need to add code to compare parts of the tree to

decide if we can re-use DOM elements from the previous

Foundations: Building our own React 19

render tree. And last, we need to return a tree of elements

that can be used in the next render as a comparison and

to reference the DOM elements that we create. These new

element objects will have the same structure as our current

elements but we will add two new properties: domElement
and parent. domElement is the DOM element associated

with our synthetic element and parent is a reference to the

parent DOM element.

Here we begin by adding a global object that will store our last

render tree, keyed by the container. container refers

to the browser’s DOM element that will be the parent for all of

the React derived DOM elements. This parent DOM element

can only be used to render one tree of elements at a time so it

works well to use as a key for renderTrees.

const renderTrees = {};
function render(element, container) {

const tree =
render_internal(element, container, renderTrees[container]);

// render complete, store the updated tree
renderTrees[container] = tree;

}

As you can see, the change wemade is to move the core of our

algorithm into a new function called render_internal
and pass in the result of our last render to render_inter-
nal.

Now that we have stored our last render tree we can go

ahead and update our render method with the heuristics for

Foundations: Building our own React 20

reusing the DOM elements. We name it render_inter-
nal because it is what controls the rendering but takes an

additional argument now: the prevElement. prevEle-
ment is a reference to the corresponding element from

the previous render and contains a reference to its associated

DOM element and parent DOM element. If it’s the first

render or if we are rendering a new node or branch of the

tree then prevElement will be undefined. If, however,

element is undefined and prevElement is defined

then we know we need to delete a node that previously

existed.

function render_internal(element, container, prevElement) {
let domElement, children;
if (!element && prevElement) {

removeDOMElement(prevElement);
return;

} else if (element && !prevElement) {
domElement = createDOMElement(element);

} else if (element.type === prevElement.type) {
domElement = prevElement.domElement;

} else { // types don't match
removeDOMElement(prevElement);
domElement = createDOMElement(element);

}
setDOMProps(element, domElement, prevElement);
children = renderChildren(element, domElement, prevElement);

if (!prevElement || domElement !== prevElement.domElement) {
container.appendChild(domElement);

}

return {
domElement: domElement,
parent: container,

Foundations: Building our own React 21

type: element.type,
props: {

...element.props,
children: children

}
};

}

The only time we shouldn’t set DOM properties on our

element and render its children is when we are deleting an

existing DOM element. We use this observation to group the

calls for setDOMProps and renderChildren. Choos-
ing when to append a new DOM element to the container is

also part of the heuristics. If we can reuse an existing DOM

element then we do, but if the element type has changed or if

there was no corresponding existing DOM element then and

only then dowe append a newDOMelement. This ensures the

actual DOM tree isn’t being replaced every time we render,

only the elements that change are replaced.

In the real React, when a new DOM element is appended to

the DOM tree, React would invoke componentDidMount
or schedule useEffect.

Next up we’ll go through all the auxiliary methods that

complete the implementation.

Removing a DOM element is straightforward; we just re-
moveChild on the parent element. Before removing the

element, React would invoke componentWillUnmount
and schedule the cleanup function for useEffect.

Foundations: Building our own React 22

function removeDOMElement(prevElement) {
prevElement.parent.removeChild(prevElement.domElement);

}

In creating a new DOM element we just need to branch if

we are creating a text element since the browser API differs

slightly. We also populate the text element’s value as the API

requires the first argument to be specified even though later

on when we set props we will set it again. This is where

React would invoke componentWillMount or schedule

useEffect.

function createDOMElement(element) {
return element.type === 'TEXT' ?

document.createTextNode(element.props.nodeValue) :
document.createElement(element.type);

}

To set the props on an element, we first clear all the existing

props and then loop through the current props, setting them

accordingly. Of course, we filter out the children prop

since we use that elsewhere and it isn’t intended to be set

directly.

Foundations: Building our own React 23

function setDOMProps(element, domElement, prevElement) {
if (prevElement) {

Object.keys(prevElement.props)
.filter((key) => key !== 'children')
.forEach((key) => {

domElement[key] = ''; // clear prop
});

}
Object.keys(element.props)

.filter((key) => key !== 'children')

.forEach((key) => {
domElement[key] = element.props[key];

});
}

React is more intelligent about only updating

or removing props that need to be updated or

removed.

This algorithm for setting props does not cor-

rectly handle events, which must be treated spe-

cially. For this exercise that detail is not impor-

tant and we leave it out for simplicity.

For rendering children we use two loops. The first loop

removes any elements that are no longer being used. This

would happen when the number of children is decreased. The

second loop starts at the first child and then iterates through

all of the children of the parent element, calling render_-
internal on each child. When render_internal is

Foundations: Building our own React 24

called the corresponding previous element in that position is

passed to render_internal, or undefined if there is

no corresponding element, like when the list of children has

grown.

function renderChildren(element, domElement, prevElement = { prop\
s: { children: [] }}) {

const elementLen = element.props.children.length;
const prevElementLen = prevElement.props.children.length;
// remove now unused elements
for (let i = elementLen; i < prevElementLen - elementLen; i++\

) {
removeDOMElement(element.props.children[i]);

}
// render existing and new elements
return element.props.children.map((child, i) => {

const prevChild = i < prevElementLen ? prevElement.props.\
children[i] : undefined;

return render_internal(child, domElement, prevChild);
});

}

It’s very important to understand the algorithm used here be-

cause this is essentially what happens in React when incorrect

keys are used, like using a list index for a key. And this is why

keys are so critical to high performance (and correct) React

code. For example, in our algorithm here, if you removed an

item from the front of the list you may cause every element

in the list to be created anew in the DOM if the types no

longer match up. Later on, in the chapter on keys, we will

update this algorithm to incorporate keys. It’s actually only a

minor difference in determining which child gets paired

Foundations: Building our own React 25

with which prevChild. Otherwise this is effectively the

same algorithm React uses when rendering lists of children.

Example of renderChildren 2nd loop when the 1st element has been
removed. In this case the trees for all of the children will be torn down and
rebuilt.

i child Type prevChild Type

0 span div

1 input span

2 - input

There are a few things to note here. First, it is important to

pay attention to when React will be removing a DOM element

from the tree and adding a new one as this is when the related

lifecycle events or hooks are invoked. And invoking those

lifecycle methods or hooks, and the whole process of tearing

down and building up a component is expensive. So again, if

you use a bad key, like the algorithm here simulates, you’ll

be hitting a major performance bottleneck since React will

not only be replacing DOM elements in the browser but also

tearing down and rebuilding the trees of child components.

Fibers: Splitting up Render

The actual React implementation used to look very similar to

what we’ve built so far, but with React 16 this has changed

dramatically with the introduction of Fibers. Fibers are a

Foundations: Building our own React 26

name that React gives to discrete units of work during the

render process. And the React reconciliation algorithm was

changed to be based on small units of work instead of one

large, potentially long-running call to render. This means

that React is now able to process just part of the render

phase, pause to let the browser take care of other things,

and resume again. This is the underlying change the enables

the experimental Concurrent Mode as well as running most

hooks without blocking the render.

But even with such a large change, the underlying algorithms

for deciding how and when to render components is the same.

And when not running in Concurrent Mode the effect is still

the same as React does the render phase in one block still. So

using a simplified interpretation that doesn’t include all the

complexities of breaking up the process in to chunks enables

us to see more clearly how the process as a whole works. At

this point bottlenecks are much more likely to occur from the

underlying algorithms and not from the Fiber specific details.

In the chapter on Concurrent Mode we will learn more about

Fibers.

Putting it all together

Throughout the rest of the book we will be building on and

using our React implementation so it would be helpful to see

Foundations: Building our own React 27

it all put together and working. At this point the only thing

left to do is to create some components and use them!

const SayNow = ({ dateTime }) => {
return ['h1', {}, [`It is: ${dateTime}`]];

};

const App = () => {
return ['div', { 'className': 'header' },

[SayNow({ dateTime: new Date() }),
['input', { 'type': 'submit', 'disabled': 'disabled'\

}, []]
]
];

}

render(createElement(App()), document.getElementById('root'));

We are creating two components, that output JSM, as we

defined it earlier. We create one component prop for the

SayNow component: dateTime. It gets passed from the

App component. The SayNow component prints out the

DateTime passed in to it. You might notice that we are

passing props the same way one does in the real React, and it

just works!

The next step is to call render multiple times.

setInterval(() =>
render(createElement(App()), document.getElementById('root')),
1000);

If you run the code above you will see the DateTime display

being updated every second. And if you watch in your dev

Foundations: Building our own React 28

tools or if you profile the run you will see that the only part of

the DOM that gets updated or replaced is the part that changes

(aside from the DOM props). We now have a working version

of our own React.

This implementation is designed for teaching

purposes and has some known issues and bugs,

like always updating the DOM props, along with

other things. Fundamentally, it functions the

same as React but if you wanted to use it in a

more production setting it would take a lot more

development.

Conclusion

Of course our version of React elides over many details

that React must contend with, like starting a re-render from

where state changes and event handlers. For understanding

how to build high-performance React applications, however,

the most important piece to understand is how and when

React renders components, which is what we have learned

in creating our own mini version of React.

At this point you should have an understanding of how React

works. In the rest of the book we are going to be refining this

model and looking at practical applications of it so that we are

Foundations: Building our own React 29

prepared to build high performance React applications and

diagnose any bottlenecks.

Rendering Model
Now that we have a firm understanding of the underpinnings

of React we can begin to look at potential bottlenecks and

their solutions. We’ll start with a little quiz about how React

chooses when to render a component.

TODO insert img-tree of components

In figure 1, if state changes in component A but nothing

changes in B will React ask B to re-render?

Yes. Absolutely. Always, unless shouldComponentUp-
date returns false, which is not even an option with func-

tional components and is discouraged for class based compo-

nents. So if we have a large tree of components and we change

state high in the tree React will be constantly re-rendering

large parts of the tree. (This is common because app state often

has to live up high in the tree because props can only be passed

down.) This is clearly very inefficient so why does React do

it?

If you remember back to when we implemented the render

algorithm you’ll recall that React does nothing to see if a

component actually needs to re-render, it only tests whether

DOM elements need to be replaced or removed. Instead React

Rendering Model 31

always renders all children. React is effectively off-loading

the descision to re-render to the components themselves

because a general solution has poor performance.

Originally React had shouldComponentUpdate to solve

this issue but the developers of React found that for users

implementing it correctly was difficult and error prone. Pro-

grammers would add new props to a component but forget to

update shouldComponentUpdate with the new props

causing the component to not update when it should which

led to strange and hard to diagnose bugs. So if we shouldn’t

use shouldComponentUpdate what tools are we left

with?

And it’s a great question because unneeded renders can be

a massive bottleneck, especially on large lists of components.

In fact, there is no other way to control renders; React will

always render.

But there is still hope. While we can’t control if our compo-

nent will render, what if instead of just always re-running all

of our render code on each render, we instead kept a copy

of the result of the render and next time React asks us to re-

render we just return the result we saved? Now that, with two

modifications, is exactly what we will do.

TODO Note: this stops full tree from re-rendering

Obviously we can’t just render once and then forever return

that result because our state and props might change. So we

Rendering Model 32

also need to track the state and props and only return our

cached result if they haven’t changed.

As you may have already noticed this is a common solution

in Computer Science for such problems: memoization. What

we want is to memoize our components.

TODO Note: explain memoization

This is indeed such a common bottleneck and solution that

React provides an API to facilitate it.

We will learn about this API by first looking at the signatures

of the React API itself, then we will extend our React imple-

mentation from chapter one to support the same API. Then

we will discuss its usage and analyze when and how to use it.

React.memo

The first API React provides that we will look at is Re-
act.memo. React.memo is a higher-order component

(HOC) that wraps your functional component. It handles

partially memoizing your component based on its props (not

state). If your component contains useState or useC-
ontext hooks it will re-render when the state or context

changes.

It is important to note that while React named their function

“memo” it is more like a partial memoization compared to the

Rendering Model 33

usual definition of memoization. Normally in memoization

when a function is given the same inputs as a previous

invocation it will just return a stored result, however, with

React’s memo only the last invocation is memoized. So if

you have a prop that alternates between two different values

React’s memo will always re-render the component whereas

with traditional memoization the component would only ever

get rendered twice in total.

Here is the signature for React.memo:

function (Component, areEqual?) { ... }

It takes two arguments, one required and one optional. The

required argument is the component you want to memoize.

The second and optional argument is a function that allows

you to tell React when your component will produce the same

output.

If the second argument is not specified then React performs a

shallow comparison between props it has received in the past

and the current props. If the current props match props that

have been passed to your component before, React will use the

output stored from that previous render instead of rendering

your component again. If you want more control over the

prop comparison, like if you wanted to deeply compare some

props, you would pass in your own areEqual?. However,

it’s generally recommended to program in a more pure style

Rendering Model 34

instead of using areEqual? because it can suffer from the

same problem that shouldComponentUpdate did.

React.PureComponent

React.PureComponent is very similar toReact.memo,
but for class based components. Like React.memo, Re-
act.PureComponentmemoizes the component based on

a shallow comparison of its props and state.

Here is the signature for React.PureComponent:

class Pancake extends React.PureComponent {
...

}

Adding support for memoization
to our React

Implementing full-blown memoization would be outside the

scope of this book but since React only memoizes the last

render it is quite easy for us to add memo support.

The most interesting part of the memo implementation is the

default areEqual implementation. This is the implementa-

tion components will use if they don’t provide their own. To

see if memo can return a previous render or not it compares

the props to see if they are the same use the following

defaultAreEqual function. This what that looks like:

Rendering Model 35

function defaultAreEqual(oldProps, newProps) {
if (typeof oldProps !== 'object' || typeof newProps !== 'obje\

ct') {
return false;

}

const oldKeys = Object.keys(oldProps);
const newKeys = Object.keys(newProps);

if (oldKeys.length !== newKeys.length) {
return false;

}

for (let i = 0; i < oldKeys.length; i++) {
// Object.is - the comparison to note
if (!oldProps.hasOwnProperty(newKeys[i]) ||

!Object.is(oldProps[newKeys[i]], newProps[newKeys[i]]\
)) {

return false;
}

}

return true;
}

oldProps and newProps are objects containing the previ-

ous render’s props and the current render’s props. Much of the

function is just boilerplate to ensure the prop objects are the

same type and shape. The important part is noted in the loop

where we use JavaScript’s Object.is method to compare

each prop object’s values.

If you’re not familiar with Object.is, it is

nearly the same as the identity operator ===
except it treats -0 and +0 as equal but not does

not treat Number.NaN as equal to NaN.

Rendering Model 36

It is important to notice that if a prop value is an object

then we are not testing its contents, only whether the objects

themselves are the same object or not. For example, if we have

two props a and b set to the following objects that look the

same they will cause defaultAreEqual to return false.

const a = { x: 1 };
const b = { x: 1 };
Object.is(a, b); // false

Even though a and b look like the same object they are in

fact instances of two different objects and will therefore cause

memo to not find a match and your component will re-render.

Using object literals, like in the example above, as prop values

is a very common pattern that will “break” memoization of a

component.

This is also a potential pitfall in another way:

const a = { x: 1 };
const b = a;
Object.is(a, b); // true
a.x = 2;
Object.is(a, b); // true

In this example it may be obvious that a still equals b at the

end but in React applications this is often less clear because

the object being used as a prop is coming from somewhere

else. The lesson to watch out for is that if you pass the same

object to a memoized component while changing that object’s

Rendering Model 37

contents between renders the memoized component won’t

know that the contents have changed andwill instead return a

cached render instead of doing what you probably are expect-

ing: re-rendering. So the overall lesson when using objects

in props with memoized components is that objects with the

same contents should be the same object and objects with

different contents should be different objects. If managing

this is a problem in your application there are immutability

libraries that you can use that can help out.

As you can see there is a cost to memoizing a component

both in computer resources and programmer effort so it is

important to only apply memoization when a component

needs it and will benefit from it.

If a component only renders a few times or infrequently it

is not a good candidate for memoization since it is unlikely

that a memoized render result will get returned and even if

it does it is unlikely to make up for the cost of implementing

and using it unless its rendering process is unusually compu-

tationally intense.

Another case when memoization is not a good idea is when

the props for a component are not often the same as a previous

render. Like take, for example, a component that renders the

current hours, minutes, and seconds and receives those inputs

as props. Unless you’re rendering that component multiple

times per second the props will never be the same as a

Rendering Model 38

previous render. So if you were to memoize that component

you would be using CPU cycles for the memoization process

and filling up memory with render results without ever being

able to re-use a render.

Here some rules for working with memoized components:

• Don’t use object literals

• Don’t modify objects

• Objects with the same contents should be the same

instance

• Use memoization: on components that get called fre-

quently

• Use memoization: when props will often be the same for

multiple renders in succession

• Use memoization: to prevent part of the component tree

from re-rendering

And finally we have the memo implementation:

Rendering Model 39

function memo(component, areEqual = defaultAreEqual) {
let oldProps = [];
let lastResult = false;
return (props) => {

const newProps = propsToArray(props);
if (lastResult && areEqual(oldProps, newProps) {

return lastResult;
} else {

lastResult = component(props);
oldProps = newProps;
return lastResult;

}
};

}

memo is quite straightforward. We just store the previous

props and result and if the new props match the old props

we return the last result. In React this is also connected to the

useState and useContext hooks so that whenever state

is changed a re-render is forced and the result stored.

Of course, you can provide your own areEqual imple-

mentation instead of using the default shallow comparison

version. When might this make sense and are there any

performance considerations in doing so?

The default shallow comparison method is relatively fast so

by itself it is unlikely to be a performance bottleneck so the

only reason to implement your own version is if you want

areEqual to do a deeper comparison of the props, like com-

paring the contents of objects passed as props or the contents

of arrays. You could just write your own implementation that

doesmore involved comparisons on the props that youwant it

Rendering Model 40

to but that is also a potential pitfall. Like if another developer

adds a new prop to the component but doesn’t realize there

is a custom areEqual implementation the component will

break since it won’t detect when the new prop has a new value

and therefore won’t trigger a new render. A better approach

is to use a generic deep comparison procedure that does a

deep comparison on all props but this can easily become a

performance bottleneck so use it with care (and is likely the

reason React doesn’t use it by default).

TODO useCallback

Identifying &
Diagnosing
Bottlenecks
When your application is not performing as you would like

or expect, what can you do? What follows is my general

approach to solving performance bottlenecks with a focus on

React specific tools. There is an element of creativity to the

process though so you should take this more as a guide and

not something set in stone. You can start here but also try to

find what works best for you.

These are the six main steps I use to solve performance

bottlenecks:

• Describing the performance bottleneck

• Measuring the bottleneck

• Identifying the source

• Diagnosing the cause

• Generating possible solutions

• Selecting and implementing a solution

Identifying & Diagnosing Bottlenecks 42

Figure 1: Solving Bottlenecks Cycle

As you can see in Figure 1, I use them in a cycle centered

around measuring the bottleneck so that I’ll be able to track

my progress and knowwhen I have eliminated the bottleneck.

Describing Performance Issues

The first step is to identify and qualify the bottleneck. You can

start by asking “what are the symptoms?” and “what triggers

them?”. It’s very important to dig in as much as possible at

this stage and gather as much information as possible. Here

are the questions I generally use to get you started:

• What specifically is the issue?

– A lack of responsiveness?

– Temporary jankiness?

– What am I/the user being prevented from doing?

• When does the issue start?

• When does it finish?

• Is the intensity and/or duration variable or constant?

• Is it predictable? Does it always happen?

Identifying & Diagnosing Bottlenecks 43

• Does it seem like anything triggers it?

You can start with trying to answer these questions or you

can come up with your own. The only way to get good at it

is practice as it’s more an art than a science, at this stage.

This stage might not seem that important or the answers

might seem obvious but being thorough here can actually

save you a lot of time later on. It’s very easy to misunder-

stand a bottleneck and then begin your investigation in the

wrong place, wasting valuable time, or even worse, crafting a

solution to the wrong problem.

Measuring

Once you’ve described the performance issue in as much

detail as you can it’s time to move on to the next stage:

measuring the issue. This stage is vital to the process. Do

not skip this stage. The only way later on to ensure you’ve

actually fixed the problem is to measure the problem to the

best of your ability. The better you can quantify the issue

the easier the rest of the process will be. This can be very

challenging, especially with things that seem immeasurable,

like UI jankiness but if you work at it there is generally a way

to do. We will discuss a few techniques coming up.

One technique I use is very simple: timing a section of code

and logging the results to the console. Most modern browsers

Identifying & Diagnosing Bottlenecks 44

now support the PerformanceNavigationTiming API which

includes many tools to make this process easier but doing it

without the API works too. I often start logging an expansive

amount of my code and then moving my measurement loca-

tions in closer to each other until they have either isolated

a section of code or eliminated a section of code from the

possibilities.

While the logging times can be very useful for some bottle-

necks, they can also be more cumbersome for a lot of React

bottlenecks because it can be a lot of work to insert your

timing calls in the right location when the bottleneck appears

to be coming from somewhere in a tree of React components.

React provides a tool for this though: a profiler. A profiler is a

tool, usually in conjunction with a compiler, that effectively

inserts many timers all over your code and then compiles the

results in to charts so it’s easier to pinpoint issues.

Profilers don’t usually insert “timers” instead us-

ing sampling or other techniques but the impor-

tant part for us here is just knowing that they

can provide insight into the performance of your

program and that they can have an effect on

performance themselves.

To use the React profiler you will first need to ensure that you

have installed the React developer tools plugin for the browser

you are using. After that you must ensure your build is in-

https://developer.mozilla.org/en-US/docs/Web/API/PerformanceNavigationTiming

Identifying & Diagnosing Bottlenecks 45

strumented (meaning it is setup for use with the profiler).

With create-react-app this will be when in development mode.

If you are unsure check out the documentation for the React

profiler as well as your build tools, like webpack.

Reducing Renders

Improving DOMMerge
Performance

Reducing Number of
Components
higher-order components

Windowing

Performance Tools
trace from scheduler/tracing/profiler component

JS Performance Tools

Code Splitting
React.lazy, suspense

use on routes

how to handle updates of assets that have new names?

Server Side Rendering

Concurrent Rendering

UX

JS Service Workers

Keys

Reconciliation
• diffing algorithm based on heuristics. generic algorithm

is O(n³)

• “Fiber” algorithm notes

– lists reordering without key means full list out-

put/update

– type changes cause full re-render

– keys should be stable, predictable, unique

	Table of Contents
	Preface
	Introduction
	Foundations: Building our own React
	Components of React
	Markup in JavaScript: JSX
	Getting Ready to Render with createElement
	Render: Putting Elements on the Screen
	Reconciliation, or How React Diffs
	Fibers: Splitting up Render
	Putting it all together
	Conclusion

	Rendering Model
	React.memo
	React.PureComponent
	Adding support for memoization to our React

	Identifying & Diagnosing Bottlenecks
	Describing Performance Issues
	Measuring

	Reducing Renders
	Improving DOM Merge Performance
	Reducing Number of Components
	Windowing
	Performance Tools
	JS Performance Tools
	Code Splitting
	Server Side Rendering
	Concurrent Rendering
	UX
	JS Service Workers
	Keys
	Reconciliation

